Relationship between the native-state hydrogen exchange and folding pathways of a four-helix bundle protein.
نویسندگان
چکیده
The hydrogen exchange behavior of a four-helix bundle protein in low concentrations of denaturant reveals some partially unfolded forms that are significantly more stable than the fully unfolded state. Kinetic folding of the protein, however, is apparently two-state in the absence of the accumulation of early folding intermediates. The partially unfolded forms are either as folded as or more folded than the rate-limiting transition state and appear to represent the major intermediates in a folding and unfolding reaction. These results are consistent with the suggestion that partially unfolded intermediates may form after the rate-limiting step for small proteins with apparent two-state folding kinetics.
منابع مشابه
Towards a consistent modeling of protein thermodynamic and kinetic cooperativity: how applicable is the transition state picture to folding and unfolding?
To what extent do general features of folding/unfolding kinetics of small globular proteins follow from their thermodynamic properties? To address this question, we investigate a new simplified protein chain model that embodies a cooperative interplay between local conformational preferences and hydrophobic burial. The present four-helix-bundle 55mer model exhibits protein-like calorimetric two...
متن کاملExplicit-chain model of native-state hydrogen exchange: implications for event ordering and cooperativity in protein folding.
Native-state hydrogen exchange experiments on several proteins have revealed partially unfolded conformations with diverse stabilities. These equilibrium observations have been used to support kinetic arguments that folding proceeds via a sequential "pathway." This interpretative logic is evaluated here by analyzing the relationship between thermodynamic behavior and folding kinetics in a class...
متن کاملA general method for the prediction of the three dimensional structure and folding pathway of globular proteins: Application to designed helical proteins
Starting from amino acid sequence alone, a general approach for simulating folding into the molten globule or rigid, native state depending on sequence is described. In particular, the 3D folds of two simple designed proteins have been predicted using a Monte Carlo folding algorithm. The model employs a very flexible hybrid lattice representation of the protein conformation, and fast lattice dy...
متن کاملExploring the folding free energy surface of a three-helix bundle protein.
The multidimensional free energy surface for a small fast folding helical protein is explored based on first-principle calculations. The model represents the 46-residue segment from fragment B of staphylococcal protein A. The relationship between collapse and tertiary structure formation, and the order of collapse and secondary structure formation, are investigated. We find that the initial col...
متن کاملStable folding core in the folding transition state of an α-helical integral membrane protein
Defining the structural features of a transition state is important in understanding a folding reaction. Here, we use Φ-value and double mutant analyses to probe the folding transition state of the membrane protein bacteriorhodopsin. We focus on the final C-terminal helix, helix G, of this seven transmembrane helical protein. Φ-values could be derived for 12 amino acid residues in helix G, most...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 41 25 شماره
صفحات -
تاریخ انتشار 2002